Speakeasy Logo
Skip to Content

Using the Functions Framework

Overview

The Gram Functions Framework provides a streamlined way to build MCP tools using TypeScript. It handles the MCP protocol implementation while letting you focus on your tool logic.

Choosing the Gram Framework

Function structure

Every Gram Function follows this basic structure:

gram.ts
import { Gram } from "@gram-ai/functions"; import * as z from "zod/mini"; const gram = new Gram().tool({ name: "add", description: "Add two numbers together", inputSchema: { a: z.number(), b: z.number() }, async execute(ctx, input) { return ctx.json({sum: input.a + input.b}); }, }); export default gram;

Tool definition

Each tool requires the following properties:

  • name: Unique identifier for the tool
  • description (optional): Human-readable explanation of what the tool does
  • inputSchema: Zod schema defining the expected input parameters
  • execute: Async function that implements the tool logic

Context object

The execute function receives a context object with several helper methods for handling responses and accessing configuration:

Response methods

  • ctx.json(data): Returns a JSON response
  • ctx.text(data): Returns a plain text response
  • ctx.html(data): Returns an HTML response
  • ctx.fail(data, options?): Throws an error response
const gram = new Gram().tool({ name: "format_data", inputSchema: { format: z.enum(["json", "text", "html"]), data: z.string() }, async execute(ctx, input) { if (input.format === "json") { return ctx.json({ data: input.data }); } else if (input.format === "text") { return ctx.text(input.data); } else { return ctx.html(`<div>${input.data}</div>`); } }, });

Additional context properties

  • ctx.signal: AbortSignal for handling cancellation
  • ctx.env: Access to parsed environment variables
const gram = new Gram().tool({ name: "long_running_task", inputSchema: { url: z.string() }, async execute(ctx, input) { try { const response = await fetch(input.url, { signal: ctx.signal }); return ctx.json(await response.json()); } catch (error) { if (error.name === "AbortError") { return ctx.fail("Request was cancelled"); } throw error; } }, });

Input validation

The framework validates inputs against the provided Zod schema by default. For strict validation, inputs that don’t match the schema will be rejected.

Lax mode

To allow unvalidated inputs, enable lax mode:

const gram = new Gram({ lax: true }).tool({ name: "flexible_tool", inputSchema: { required: z.string() }, async execute(ctx, input) { // input may contain additional properties not in the schema return ctx.json({ received: input }); }, });

Environment variables

Gram Functions can access environment variables directly from process.env:

const gram = new Gram().tool({ name: "api_call", inputSchema: { endpoint: z.string() }, async execute(ctx, input) { const apiUrl = process.env.API_URL; const response = await fetch(`${apiUrl}/${input.endpoint}`); return ctx.json(await response.json()); }, });

For more details on configuring and managing environment variables in Gram Functions, see Configuring environments.

Using fetch

Tools can make requests to downstream APIs and respond with the result:

const gram = new Gram().tool({ name: "spacex-ships", description: "Get the latest SpaceX ship list", inputSchema: {}, async execute(ctx) { const response = await fetch("https://api.spacexdata.com/v3/ships"); return ctx.json(await response.json()); }, });

Response flexibility

Tools can return responses in multiple formats:

  • JSON responses via ctx.json()
  • Plain text via ctx.text()
  • HTML content via ctx.html()
  • Custom Web API Response objects with specific headers and status codes
const gram = new Gram().tool({ name: "custom_response", inputSchema: { code: z.number() }, async execute(ctx, input) { return new Response("Custom response", { status: input.code, headers: { "X-Custom-Header": "value" }, }); }, });

Composability

Gram instances can be composed together using the .extend() method, allowing tool definitions to be split across multiple files and modules. This pattern is similar to Hono’s grouping pattern and helps organize larger codebases.

Basic composition

Split tool definitions into separate modules and combine them:

train.ts
import { Gram } from "@gram-ai/functions"; import * as z from "zod/mini"; export const trainGram = new Gram({ envSchema: { TRAIN_API_KEY: z.string().describe("API key for the train service"), }, }) .tool({ name: "train_book", description: "Books a train ticket", inputSchema: { destination: z.string(), date: z.string() }, async execute(ctx, input) { const apiKey = ctx.env.TRAIN_API_KEY; // Implementation here return ctx.json({ booked: true }); }, }) .tool({ name: "train_status", description: "Gets the status of a train", inputSchema: { trainId: z.string() }, async execute(ctx, input) { // Implementation here return ctx.json({ status: "on time" }); }, });
flight.ts
import { Gram } from "@gram-ai/functions"; import * as z from "zod/mini"; export const flightGram = new Gram({ envSchema: { FLIGHT_API_KEY: z.string().describe("API key for the flight service"), }, }) .tool({ name: "flight_book", description: "Books a flight ticket", inputSchema: { destination: z.string(), date: z.string() }, async execute(ctx, input) { const apiKey = ctx.env.FLIGHT_API_KEY; // Implementation here return ctx.json({ booked: true }); }, }) .tool({ name: "flight_status", description: "Gets the status of a flight", inputSchema: { flightNumber: z.string() }, async execute(ctx, input) { // Implementation here return ctx.json({ status: "departed" }); }, });
gram.ts
import { Gram } from "@gram-ai/functions"; import { trainGram } from "./train"; import { flightGram } from "./flight"; const gram = new Gram() .extend(trainGram) .extend(flightGram); export default gram;

Environment schema merging

When composing Gram instances, environment schemas are automatically merged. Each module can define its own environment variables, and the final composed instance will validate all required variables:

// Each module defines its own environment requirements const weatherGram = new Gram({ envSchema: { WEATHER_API_KEY: z.string(), }, }).tool({ name: "get_weather", inputSchema: { city: z.string() }, async execute(ctx, input) { // Access environment variable from this module const apiKey = ctx.env.WEATHER_API_KEY; return ctx.json({ temperature: 72 }); }, }); const newsGram = new Gram({ envSchema: { NEWS_API_KEY: z.string(), }, }).tool({ name: "get_news", inputSchema: { topic: z.string() }, async execute(ctx, input) { // Access environment variable from this module const apiKey = ctx.env.NEWS_API_KEY; return ctx.json({ articles: [] }); }, }); // Composed instance requires both environment variables const gram = new Gram() .extend(weatherGram) .extend(newsGram); // Both WEATHER_API_KEY and NEWS_API_KEY must be provided

Benefits of composition

Composing Gram instances provides several advantages:

  • Modularity: Organize related tools into separate files
  • Reusability: Share tool definitions across different Gram instances
  • Maintainability: Easier to manage large codebases with many tools
  • Team collaboration: Different team members can work on separate modules

Next steps

Last updated on